
Abstract In a previous study, bulked segregant analysis
with amplified fragment length polymorphisms (AFLPs)
identified several markers closely linked to the sugar-
cane mosaic virus resistance genes Scmv1 on chromo-
some 6 and Scmv2 on chromosome 3. Six AFLP markers
(E33M61-2, E33M52, E38M51, E82M57, E84M59 and
E93M53) were located on chromosome 3 and two mark-
ers (E33M61-1 and E35M62-1) on chromosome 6. 
Our objective in the present study was to sequence the
respective AFLP bands in order to convert these domi-
nant markers into more simple and reliable polymerase
chain reaction (PCR)-based sequence-tagged site mark-
ers. Six AFLP markers resulted either in complete identi-
cal sequences between the six inbreds investigated in
this study or revealed single nucleotide polymorphisms
within the inbred lines and were, therefore, not convert-
ed. One dominant AFLP marker (E35M62-1) was 
converted into an insertion/deletion (indel) marker and 
a second AFLP marker (E33M61-2) into a cleaved am-
plified polymorphic sequence marker. Mapping of both
converted PCR-based markers confirmed their localiza-
tion to the same chromosome region (E33M61-2 on
chromosome 3; E35M62-1 on chromosome 6) as the
original AFLP markers. Thus, these markers will be use-
ful for marker-assisted selection and facilitate map-based
cloning of SCMV resistance genes.
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Introduction

Sugarcane mosaic virus (SCMV) is one of the most im-
portant virus diseases of maize (Zea mays L.) and causes
serious yield losses in susceptible cultivars (Fuchs and
Grüntzig 1995). It is naturally transmitted by aphids in a
non-persistent manner, which makes control of SCMV
vectors rather inefficient. Therefore, cultivation of resis-
tant varieties is the most promising approach for control-
ling of SCMV.

Kuntze et al. (1997) screened 122 early-maturing 
European inbred lines for resistance to SCMV and
MDMV (maize dwarf mosaic virus) and identified three
dent inbreds (D21, D32 and FAP1360A) displaying com-
plete resistance under both field and greenhouse condi-
tions. Two major genes, Scmv1 and Scmv2 (previously
named Scm1 and Scm2), conferring resistance to SCMV
were mapped to chromosome arms 6S and 3L, respec-
tively, in cross D145 × D32 by quantitative trait 
loci (QTL) analysis (Xia et al. 1999) and in cross F7 ×
FAP1360A by bulked segregant analysis (BSA) (Xu et
al. 1999) and QTL analysis (Dussle et al. 2000). As 
resistance against SCMV is strongly affected by environ-
mental conditions (Melchinger et al. 1998), molecular
markers turned out to be a good tool to determine the 
resistance genotype.

Identification of molecular markers closely linked to
the SCMV resistance genes is an essential step towards
both marker-assisted selection (MAS) and map-based
cloning of these genes. Xu et al. (1999) identified 23
tightly linked amplified fragment length polymorphism
(AFLP) markers for both major resistance genes by
BSA: 11 markers linked to Scmv2 on chromosome 3 and
12 linked to Scmv1 on chromosome 6, including one
AFLP marker cosegregating with Scmv1.

Although the AFLP technique is powerful and reli-
able in identifying markers closely linked to genes of in-
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terest, it has some disadvantages for use in MAS and
map-based cloning. Limitations to the large-scale, locus-
specific application of AFLPs include their dominant
type of inheritance, the intensity of labour involved, and
the high costs. Hence, conversion of AFLP markers into
sequence-specific polymerase chain reaction (PCR)
markers is required for screening large breeding popula-
tions at low costs.

Sequence-specific PCR markers have been success-
fully developed by conversion of different marker types
such as RFLPs, RAPDs and SSRs, (Bradshaw et al.
1994; Cheung et al. 1997; Jung et al. 1999). The conver-
sion of AFLP markers into PCR-based markers has been
accomplished for several species such as carrot (Bradeen
and Simon 1998), brassica (Negi et al. 2000), asparagus
(Reamon-Büttner et al. 2000), soybean (Meksem et al.
2001), apple (Xu et al. 2001), barley and wheat (Shan et
al. 1999). However, the conversion of AFLP markers
seems to be more difficult than the conversion of other
marker types due to the loss of their sequence specificity
after amplification of the AFLP-derived internal primers
(Shan et al. 1999). Hence, AFLP polymorphisms related
to EcoRI or MseI restriction site differences will not be
reflected in primers from an internal sequence (Shan et
al. 1999).

The objective of the study reported here was to 
sequence the respective AFLP bands linked to SCMV 
resistance genes in order to convert these dominant
markers into either indel (insertion/deletion) or cleaved
amplified polymorphic sequence (CAPS) markers. These
AFLP markers were previously identified by BSA to 
be closely linked with Scmv1 on chromosome 6 (two
markers) or Scmv2 on chromosome 3 (six markers). Our
goal was to obtain codominant, simple PCR-based mark-
ers as a tool for marker-assisted selection as well as for
map-based cloning of Scmv1 and Scmv2.

Materials and methods

Plant materials

Inbred lines used in this analysis were the SCMV-resistant Euro-
pean inbred lines FAP1360A, D21 and D32 and the highly suscep-
tible lines F7, D408 and D145. The mapping population consisted
of (1) a subset 87 F2:3 families derived from a cross between D32
and D145 previously used by Vuylsteke et al. (1999) to develop a
high-density AFLP map (1,355 markers), and (2) 27 resistant BC5
individuals from the cross (F7 × FAP1360A) × F7.

Isolation and cloning of tightly linked AFLP markers

AFLP markers flanking Scmv1 (E35M62-1, E33M61-1) and
Scmv2 (E33M61-2, E33M52, E38M51, E82M57, E84M59,
E93M53) were identified in a BSA employing four DNA samples:
both parental lines FAP1360A (resistant parent) and F7 (suscepti-
ble parent), as well as a resistant and a susceptible bulk (Xu et al.
1999). AFLP markers were named according to the standard list
for AFLP primer nomenclature (Keygene, The Netherlands,
http://wheat.pw.usda.gov/ggpages/keygene/AFLPs.html). AFLP
primer pairs corresponding to the tightly linked AFLP markers
were used to re-amplify the linked AFLP markers from resistant

parent FAP1360A. The resulting bands were excised from the
dried gel with a sharp, clean razor blade. The sliced DNA-contain-
ing gel was transferred into an Eppendorf tube, eluted twice with
200 µl TE (1 h each) and once with 200 µl ddH2O (2 h). The elut-
ed gel was then mixed with 50 µl ddH2O and kept on boiling 
water for 5 min to release the DNA from the gel. After the gel de-
bris was spun down, the DNA-containing supernatant was trans-
ferred into a new Eppendorf tube and used as template for the sub-
sequent amplification.

For a given linked AFLP marker, the corresponding primer
pair and the same reaction conditions as for the main amplification
of AFLPs (Vos et al. 1995) were employed to re-amplify the 
isolated AFLP marker bands. Re-amplification products were 
excised from an agarose gel, extracted with Nucleospin Kit 
(Macherey & Nagel) and blunt-end cloned into the pBluescript
vector.

Conversion of AFLP markers

After cloning, five white colonies from each transformation event
were selected. Respective inserts were sequenced using the ALF-
Express automated sequencer (Amersham Pharmacia, Freiburg).
Sequencing reaction conditions were chosen following the manu-
facturer’s (Amersham Pharmacia) suggestions, and the DNA 
sequences were analysed using the ALIGNPLUS 2.0 software pack-
age (http://www.scied.com/ses_alim.htm). If the sequencing 
of these first five clones showed identity for at least three of 
the five clones, new primers internal to the AFLP selective prim-
ers were designed using the PRIMER1.02 programme (http://
www.scied.com/ses_pd4.htm) (Table 1). Otherwise, additional
five white clones were sequenced to receive a majority of identical
sequences for one genotype. The internal primers synthesized for
fragments corresponding to the AFLP markers were employed to
amplify fragments from the inbred lines F7 and FAP1360A, which
represent the parent lines of the mapping population for BSA. In-
ternal primers of the three AFLP markers E33M61-1, E33M61-2
and E35M62-1 were additionally employed on the four inbred
lines D21, D32 (SCMV resistant), and D145, D408 (susceptible)
in order to evaluate the relationship between polymorphisms and
SCMV resistance. The extension “STS” was added to the names
of the AFLP marker after synthesizing the internal primers in or-
der to distinguish AFLP markers and converted markers.

Sequenced tagged site (STS) markers that differed in length af-
ter amplification were used immediately as indel (insertion/dele-
tion) markers. In the case of an identical sequence length, enzyme
recognition sites were identified using the CLONE manager soft-
ware package (http://www.scied.com/ses_cm6.htm). Sequence 
regions displaying single nucleotide differences in restriction 
enzyme recognition sites between parent lines of mapping popula-
tions were used to identify CAPS markers, which were separated
on a 3% MetaPhor agarose gel in 0.5× TBE buffer.

Linkage and statistical analyses

Based on the segregation data, the STS markers were mapped to
previously constructed genetic linkage maps (Xia et al. 1999; 
Xu et al. 1999). Marker orders and map distances for population
D32 × D145 were calculated with MAPMAKER 3.0B (Lander et al.
1987) using a LOD threshold of 3.0 and the mapping function of
Kosambi (1944). Marker orders and genetic distances for popula-
tion FAP1360A × F7 were calculated with CRIMAP 2.4 (Green et al.
1990) taking into account the meiotic interdependence of proge-
nies and ancestors within a population of BC individuals from dif-
ferent generations.
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Results

The polymorphic markers linked to SCMV resistance,
obtained after AFLP analysis, were in the range of
200 bp to 300 bp. All sequenced AFLP fragments con-
tained the EcoRI adapter on the one end and the MseI
adapter on the other end. Five to ten clones obtained
from inbred line FAP1360A were used to design primers
for PCR amplification of genomic DNA (Table 1). 
Following amplification using these PCR primers, no
difference in sequence length was identified for any of
the markers between inbred lines F7 and FAP1360A,
with sequence lengths ranging from 146 bp for marker
E38M51STS to 203 bp for marker E93M53STS. For the
additionally analysed inbred lines (D21, D32, D145 and
D408), markers E33M61-1STS and E33M61-2STS
showed identical sequence length for all six inbred lines
(195 bp and 152 bp, respectively). A 152-bp sequence
was identified with marker E35M62-1STS for all of the
inbred lines D32, D21 and D408 except D145 (160 bp).
This polymorphism of 8 bp between the parents of cross
D32 × D145 could be easily detected on a 3% MetaPhor
agarose gel (FMC) (Fig. 1). Genetic mapping was per-
formed using 87 F3:2 families of cross D32 × D145,
which located E35M62-1STS on maize chromosome 6S
between markers phi075 and phi077 within the Scmv1
QTL region previously identified by Xia et al. (1999). 

Six out of the eight markers showed identical se-
quences among the clones within each inbred line. In
contrast, markers E33M61-1STS and E84M59STS re-
sulted in single nucleotide differences between the
clones within each inbred line. Single nucleotide poly-

morphisms (SNPs) between inbred lines F7 and
FAP1360A were found for the four markers E33M61-
2STS, E35M62-1STS, E33M52STS and E84M59STS.
Recognition sites for restriction enzymes could be found
only for marker E33M61-2STS, resulting in a different
number of recognition sites for the restriction enzyme
MnlI (Fig. 2). For marker E33M61-2STS, MnlI cuts the
fragments of FAP1360A (Fig. 2) and D408 four times.
The fragments of inbred lines F7, D21, D32 and D145
were cut only three times with MnlI. Therefore,
E33M61-2STS could be used as a CAPS marker (Fig. 3).
Mapping of E33M61-2STS with the BC5 mapping popu-
lation (FAP1360A × F7) confirmed the same segregation
pattern with its corresponding AFLP marker E33M61-2
and its location 7.3 cM above Scmv2. 

Table 1 STS marker development in maize: detailed information on eight STS markers converted from AFLPs that are closely linked
to resistance genes Scmv1 (chromosome 6) and Scmv2 (chromosome 3)

Marker locus Chromosome STS forward primer (5′ → 3′) Sequence length after Number of SNPsa Marker type
STS reverse primer (5′ → 3′) amplification with STS 

primers (bp)

Primers analysed with inbred F7 and FAP1360A
E33M52STS 3 CCATATCGTGTTGAGAAGGC 173 1 –

CCACTCAATGCGGTGTCTAT
E38M51STS 3 CACCAAGAAGGTTTGGATCC 146 – –

GCGTACCAATTCACTAACCG
E82M57STS 3 AACCTCCTAGCGTCATGTAG 166 – –

AGTCCTGAGTAACGGATCC
E84M59STS 3 AACAACAGTTACCAGGCCAG 168 2 –

CTTCAGATTCTCCCGAACCA
E93M53STS 3 GCTTGCCAATTCTGCATGCA 203 – –

Primers analysed with inbred lines F7, FAP1360A 
D21, D32, D145 and D408

E35M62-1STS 6 GAGTCCTGAGTAACCGCCTA 152; 160 7 Indel
CTTCATGCCTCTCGTCG

E33M61-1STS 6 ACTGCTTAGTCCTCGACAGA 195 – –
CGTACCAATTCAAGAGCGAC

E33M61-2STS 3 TCTTGTGCAACTACGACACC 152 8 CAPS
GATGATGGCATTGTCGAGGA

a Identified between pairs of inbred lines

Fig. 1 Polymorphism in population D32 × D145 after conversion
of AFLP primer E35M62-1 to the indel marker E35M62-1STS
on a 1.5% agarose gel. Lanes: 1 Susceptible parent D145, 2 resis-
tant parent D32, 3–7 genotypes of the mapping population (3, 5
homozygous; 4, 6, 7 heterozygous band pattern)
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Four out of the eight investigated markers revealed no
SNPs after pairwise comparison of the inbreds. Although
only half of the analysed markers showed between one
and eight SNPs per inbred pair, 2.1 SNPs were found per
inbred pair on average, resulting in one SNP per 71 bp.
Analyses for stop codons identified continuous open
reading frames for none of the sequences.

Discussion

In combination with BSA, AFLPs proved to be highly
efficient for finding tightly linked molecular markers to
the SCMV resistance genes Scmv1 and Scmv2 (Xu et al.
1999). However, AFLP markers are too costly and labo-
rious for high-throughput monitoring of large numbers
of genotypes. Hence, the conversion of AFLP markers
closely linked to resistance genes is an important step to
implement useful markers for MAS and map-based 
cloning, both of which require large population sizes of
thousands of individuals. Marker conversion requires the
characterization of the linked marker sequences and the
design of locus-specific primers (Paran and Michelmore
1993). Reports on successful AFLP marker conversion
are lacking so far in maize. With a size of 500–1500 bp,

RAPD fragments are easier to convert to either 
sequence-characterised amplified region (SCAR) or
CAPS markers than AFLP markers (Barret et al. 1998).
Although there are doubts in converting short fragments
like AFLPs (Negi et al. 2000), we were able to convert
two short AFLP bands (150–300 bp) into PCR-based 
indel and CAPS markers without using methods like 
inverse PCR or chromosome walking. In contrast to 
DeJong et al. (1997) and Negi et al. (2000), who applied
either inverse PCR or PCR walking to isolate the flank-
ing regions for conversion of indel markers, we found
with E35M62-1STS a polymorphism that could be used
directly as an indel marker in populations generated from
cross of D32 and D145.

After sequencing five to ten clones for each STS mark-
er, we obtained six markers with identical sequences over
most of the clones originating from one inbred. For mark-
ers E33M61-1STS and E84M53STS, SNPs were also
found within all inbred lines. In total, 8 out of 28 inbreds
investigated with the eight markers revealed single nucle-
otide changes within the inbred lines. The small number
of published reports on AFLP marker conversion might be
due to similar findings. Because identical sequences for
the several clones of one inbred line were found technical
problems in sequencing could be ruled out. The probabili-
ty of residual heterozygosity for the inbred lines is below
0.025% because they were self-fertilized for more than 12
generations. Taking into account that the independent in-
bred lines revealed the same SNP within these inbreds in
every case, it seems very unlikely that these polymor-
phisms were caused by residual heterozygosity. If we ac-
cept, the hypothesis that maize is an ancient tetraploid
species (Gaut and Doebley 1997), the whole region har-
bouring the SCMV resistance gene might be duplicated,
even though located at different regions of the genome.
Under these conditions the segregation ratio would shift
from 1r:3s (1 resistant to 3 susceptible) under a two domi-
nant gene model for BC plants to 1r:7s under a three gene
model. Although Xu et al. (1999) found a better fit with a
three dominant gene model for the segregation within 20
BC4:5 families of population F7 × FAP1360A segregating
for SCMV resistance, the presence of additional SCMV
resistance genes beside those on chromosomes 3 and 6
could not be confirmed for population F7 × FAP1360A. In
contrast, mapping of the original AFLP markers did locate
markers E33M61-1STS and E84M59STS exclusively to
chromosomes 6 and 3, respectively.

Fig. 2 Recognition sites for
restriction enzyme MnlI in
parents F7 (susceptible)
and FAP1360A (resistant) 
after amplification with CAPS
marker E33M61-2STS

Fig. 3 CAPS marker E33M61-2STS digested with the restriction
enzyme MnlI corresponding to AFLP marker E33M61-2. Lanes 1,
2 Resistant parent FAP1360A, 3, 4 susceptible parent F7



Clusters of resistance genes originating from duplica-
tion during the evolution of maize may have led to slight
sequence differences of paralogs, which may differ only
in single nucleotides but not in total length. In mapping
BAC clones of lettuce in order to analyze resistance gene
clusters, Meyers et al. (1998) identified duplicates of
AFLP markers in the same chromosome region. Genes
conferring resistance to different pathogens are often
clustered in the same chromosome region in the maize
genome (McMullen and Simcox 1995). The fact that the
AFLP markers corresponding to the converted STS
markers mapped in the same regions previously reported
to harbour clusters of resistance genes (McMullen et al.
1995) allows the assumption that the different marker 
sequences found within one inbred are linked to different
resistance genes in the same chromosome region. The
closer a marker is linked to a specific resistance gene,
the higher might be the probability of being duplicated
with the resistance gene during evolution. Hence, the 
occurrence of different sequences within one inbred line
that map to the same chromosome region seems to be
possible due to clustering. However, none of the se-
quenced AFLP fragments revealed any similarity to se-
quences known to be conserved within resistance genes.

The development of markers that can be easily han-
dled is a prerequisite to the screening of large popula-
tions in order to clone the resistance genes Scmv1 and
Scmv2. The converted CAPS and indel markers will be
useful to identify recombination events close to Scmv1
and Scmv2. So far, it is unknown whether resistance
genes cluster due to linkage or whether some of them are
identical and display pleiotropy. In support of the exis-
tence of closely linked but different major resistance
genes, Lübberstedt et al. (1999) found some susceptible
plants in an allelism test between the three European
dent inbreds D21, D32 and FAP1360A. The converted,
closely linked markers identified in the present study
could be used as probes for BAC screening in order to
solve the question of whether the Scmv1 and the Scmv2
regions each harbour only a single locus or clusters of
resistance loci.

Rafalski et al. (2001) analysed random cDNA clones
in a collection of over 30 maize lines representative for
the North American corn germplasm. Their analysis was
restricted to coding regions. Sequence alignment 
revealed one SNP per 70 bp among the 30 lines. The 
authors emphasized that pairwise comparison between
any two lines reveals a lower degree of polymorphism.
In similar experiments, Useche et al. (2001) detected one
SNP per 49 bp, although in non-coding regions. The low
number of one SNP per 71 bp found in our study might
be due to the pairwise sequence comparison in contrast
to the sequence alignment of a large number of inbreds
analysed by the previous authors. Taking into account
that only four out of the eight converted AFLP markers
showed polymorphism between inbred lines, it seems
very likely that extending the fragment size by inverse
PCR would increase the number of polymorphic STS-
primers.

The CAPS marker E33M61-2STS turned out to be
dominant in the mapping population. The polymorphism
resulted in the presence of an additional band in the 
resistant parent FAP1360A that was absent in the suscep-
tible parent F7 (Fig. 3). As in this mapping population
the individuals were either homozygous for the suscepti-
ble parent allele or heterozygous, mapping with our
mapping population of 27 resistant BC5 individuals was
not affected. However, even in this dominant case,
CAPS markers are easier to apply than the original
AFLP markers. In contrast to the AFLP markers, the
converted markers do not require purified, high-molecu-
lar-weight DNA. Consequently, the application of simple
STS markers enables a faster DNA isolation for a high
number of individuals required for fine mapping. Addi-
tionally, the polymorphisms revealed by STS markers
could be separated by an agarose gel, where no radioac-
tivity is required to visualize the results. Compared to
the analyses of AFLP markers in which polyacrylamide
gels and radioactivity are used, the application of STS
markers can reduce costs to about 20%.

The quality of a marker used for MAS depends on 
its predictive and/or diagnostic value (Borchardt and
Weissleder 2000). Whereas the predictive value of a
marker is determined by the inheritance of the marker
and the linkage between marker and trait, the diagnostic
value can be measured as the frequency of the desired
linkage phase between marker and trait. Taking into 
account that resistant individuals of different populations
harbour different resistance alleles of the same gene, 
cosegregation of these markers with the resistance trait
in each population (F7 × FAP1360A, D32 × D145, D21
× D408) is not consequently preconditioned. By analys-
ing inbred lines showing resistance, partial resistance
and susceptibility to SCMV, Xu et al. (2000) suggested a
single common ancestor for the resistance gene Scmv1.
In the present study, no marker allele identical for all 
resistant or susceptible genotypes was identified. There-
fore, the diagnostic value of these markers seems to be
low. In the case of a low diagnostic value, the allelic
phase of a marker has to be checked in each cross before
it can be used in MAS (Borchardt and Weissleder 2000).
A reason for the lack of resistance-allele-specific, coseg-
regating markers could be the presence of more than one
SCMV resistance gene in the Scmv1 region. Field exper-
iments, BSA (Xu et al. 1999), and QTL analyses (Xia et
al. 1999; Dussle et al. 2000) did not preclude the pres-
ence of more than one gene in the Scmv1 region. Since
different ancestors were expected for Scmv2 (Dussle et
al. 2000; Xu et al. 2000) and, therefore, different SCMV
resistance genes within the Scmv2 region, it was not pos-
sible to develop one single resistance-allele-specific
marker for Scmv2.
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